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This paper gives a brief overview of phases in brain

development and discusses the hypothesis that mechanisms

of working memory development are partly the same as those

of working memory training. Brain development could be

related to different, but overlapping phases: (i) structural

maturation, with a relatively high reliance of preprogrammed

processes; (ii) interactive specialization, which is a

reorganization of the functional networks, partly in response to

the environmental demands; (iii) training or skill learning, which

is a qualitative change, such as strengthened connectivity of

existent networks. The mechanisms of this skill learning could

be similar to those neural processes observed during

controlled studies of working memory training, where

strengthened connectivity between frontal and parietal regions

is suggested to play a central role. Education and formal

schooling could be one important factor driving the training and

skill-learning phase of executive functions, including

improvement of working memory.
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A central aim in developmental and educational cognitive

neuroscience is to understand the mechanisms of brain

development, their relation to cognitive abilities and the

genetic and environmental factors driving them. This

paper will review studies of cognitive development and

training. In particular, the development and training of

working memory will be related to the hypothesis that

partly the same neural mechanisms underlie both training

and development.

In a simplified account of child development one can

identify three main views, or theories, on what is driving

brain and cognitive development: (i) structural maturation,

a largely genetically preprogrammed set of processes;
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(ii) interactive specialization [1�], which is a reorganization

of the functional networks partly in response to the envi-

ronmental demands; (iii) training or skill learning, which is

a qualitative change, such as strengthened functional con-

nectivity of existent networks [2]. These three views are

not mutually exclusive, but are more likely overlapping

phases during development (Figure 1a). The exact timing

of these phases is likely to differ for different cognitive and

academic abilities. Specialization for face processing, for

example, should occur before specialization to perceive

letters or numbers. Differences in the environment for

each individual will also lead to differences in timing.

It should also be emphasized that the phases do not

correspond to a distinction between nature versus nur-

ture; maturation can only occur in a nourishing environ-

ment and genetics play a role in determining response to

training [3]. Gene by environment interactions is impor-

tant in all phases of development, but that does not mean

that separate sources of brain development can be iden-

tified.

One example of these phases is the development of

language. During the maturational phase, connectivity

between cortical regions are established. These axons are

then myelinated, which is necessary for quick signal

transduction involved in distinguishing rapid frequency

shifts in language, and later for the rapid perception of

text during reading. The interactive specialization

involves a left hemispheric word form area that gradually

acquires specialization through exposure to text [4,5] and

through its interaction with other language related corti-

cal regions. During the interactive specialization, the

functional network thus changes qualitatively [6]

(Figure 1b). But after the basic network for processing

text is established, there remains years of practice before a

child can attain adult proficiency, a skill learning phase

that is associated with quantitative changes, for example

of white matter microstructure [7,8], influenced by ge-

netic variability between individuals [9,10].

In mathematics, it has been assumed that there would

be a number form area, corresponding to the word form

area [11�]. Intracranial electrophysiological recordings

were first used to identify an area in the inferior

temporal gyrus that responded more to numerals than

to letters or false fonts [12]. Recently this area was also

identified in both hemispheres with fMRI [13]. This

number form area is must gradually achieve its special-

ization through interactive specialization, although this

process has not been documented in developmental

studies yet.
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(a) A schematic drawing of hypothetical phases of development. The

y-axis represents the rate of change, for example how much

myelination changes from one year to the next. The blue, red and

green curves represent the factors driving these changes. Age in years

is not specified, as the absolute timing will depend on each specific

function. The maturational phase is hypothesized to be mainly driven

by genetically determined signals. During the interactive specialization,

the networks are rearranged to respond to novel environmental

stimulation. In the training/skill learning phase these networks are

gradually strengthened. (b) Hypothetical changes of networks during

development. Circles represent cortical areas or subcortical regions,

and the lines the axonal connections. Thicker connections represent

stronger connectivity, that is the functional impact of activity in one

region upon another. The underlying neuronal mechanisms could be

either changes in myelination and axonal thickness or changes in

number or size of synapses.
The role of the environment is obvious for behavior

that is evolutionary new, such as reading text and

understanding symbolic arithmetics. But similar phases

might also be distinguished for development of cogni-

tive functions such as working memory, inhibition and

reasoning [2].

One indication of separate phases in cognitive develop-

ment comes from an analysis of 9000 youths aged 8–21.

This analysis focused on variability in reaction times

within an individual who performed a large number of

cognitive tasks, and how this variability differed between

individuals at different ages [14]. The variability followed

a u-shape, with an initial decrease until mid adolescence

followed by an increase during the later teenage years.

The authors interpreted the initial decrease as the end of

a maturational phase and the later increase in variability

was taken as indication of task specific skill learning in the

cognitive domain.
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The role of environmental stimulation and
cognitive training for development of
executive functions
Formal, school based education is a cognitively demand-

ing activity, which could be one important, factor influ-

encing the development of executive functions.

A recent analysis of more than 1000 individuals from the

Lothian Birth Cohort sought to further characterize the

effect of education on cognition. Comparison of different

statistical models suggested that the effect of education

on IQ is driven via individual cognitive abilities, rather

than a direct and diffuse effect on ‘g’ [15].

The effect of education specifically on working memory

capacity was estimated in 1727 children between 6 and

7 years, who participated in repeated testing over a year

[16]. Over the school year, capacity increased with about

0.6 standard deviations. The amount of time spent in the

classrooms significantly affected the development of

working memory capacity, above and beyond the effect

of chronological age. This is a strong indication that

environmental factors play an important role for develop-

ment of working memory.

Other activities that that might affect cognitive develop-

ment is practice of musical instruments [17]. A longitu-

dinal study found that practicing a musical instrument

was associated with higher WM capacity, and that devel-

opment was proportional to the amount of practiced hours

[18]. On the other hand, a large twin study investigated

the association between musical practice and IQ, here

estimated with a single test of reasoning. Although there

was a statistically significant association between the two

measures across all individuals (r = 0.1) it disappeared

when controlling for genetic and shared environmental

influences, indicating that a highly practiced twin did not

have higher IQ than the untrained co-twin [19]. Although

these are only a few studies, together they could suggest

that the effects of both schooling and musical practice

were larger for working memory than for IQ. The envi-

ronmental stimulation might thus affect some specific

cognitive functions, such as working memory, but not

more diffuse constructs, such a IQ, consistent with the

findings from the Lothian Birth Cohort [15].

The effect of education on cognitive abilities is consistent

with the malleability of cognitive functions, in particular

the contention that working memory capacity can be

increased by training [20]. The effect of working memory

training has been summarized in several recent meta-

analyses [21–25]. Although the total number of participants

is still too low to allow powerful analyses of subgroups,

meta-analyses are surprisingly consistent in showing

increases in non-trained capacity by around 0.6 standard

deviations. Another meta-analysis showed significant

transfer effect for training of ‘executive control’ [26].
www.sciencedirect.com
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In line with the suggestion that education effects single

cognitive abilities more than general constructs such as IQ

[15], one study found effects of working memory training

on non-trained measures of working memory, but not for

IQ [27].

Both schooling and cognitive training could thus be

examples of skill learning, or training phase, for cognitive

functions. An interesting question is whether similar

neuronal processes underlie cognitive training over weeks

and environmental effects of months or years. Here one

particular mechanism will be considered: increased func-

tional connectivity between frontal and parietal regions.

Neural mechanisms of connectivity
Long-range connections between cortical areas do not

grow out after birth, but existing connections can be

changed in at least two ways. The effect of activity in

one neuron on another can be modulated by outgrowth of

new synapses, dendrites or boutons [28]. These processes

are activity dependent, via the well-studied processes of

long-term potentiation. The consequence is a stronger

functional connectivity between two neurons.

Secondly, the myelin around the axons connecting two

areas can be increased, which increases conduction speed

and thus the function of the neural network. Axons can

also be lost. A study in macaque monkeys suggested that

70% of axons at birth are lost during the first few months

[29]. In is unknown to what extent axons are lost during

later childhood and adolescents in humans.

A recent study uncovered a potential third cellular mech-

anisms that could be important for relating training or

practice to changes in white matter. In mice, stimulation

of cortical neurons led to maturation of precursor cells into

mature oligodendrocytes [30��]. Four weeks later, this led

to thicker myelin sheet around the stimulated axons.

Generation of new oligodendrocytes might thus be a

mechanism behind MRI detected changes in white mat-

ter associated with training and development.

However, a study in humans, using the integration of

nuclear bomb test-derived 14C, showed that although

myelin is exchanged at a high rate, the maturation of

precursor cells is substantially lower in humans, at least in

the part of corpus callosum that was analyzed [31��]. The

data suggested an annual rate of 0.3% renewal of oligo-

dendrocytes in the human corpus callosum, which is

probably too low to explain changes in white matter

during development and training as measured with MRI.

Changes in connectivity during development
Functional connectivity can be estimated by analysis of

resting state data. There is a gradual change in connec-

tivity through ages that correlates with chronological age

[32]. Some recent studies have attempted to directly
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relate the connectivity to cognition. Fronto-striatal con-

nectivity has been associated with improvement in in-

hibitory ability [33]. In a longitudinal study, connectivity

was measured in the same individuals at age 10 and

13 [34]. The connectivity was analyzed in terms of default

mode network (DMN) and a central executive network

(CEN). There was an increased integration within each of

the networks, including increased connectivity between

prefrontal and parietal cortex of the CEN network, but

segregation between networks. Integration within the

CEN was associated with IQ. A MEG study of children

aged 8 to 11 years, found that working memory capacity

was associated with the strength of connectivity between

a fronto-parietal network and visual areas in inferior

temporal cortex [35]. These results are consistent with

previously described trends of integration and desegrega-

tion in cross-sectional studies [36], and schematically

illustrated in Figure 1b.

Changes in white matter could be one factor behind the

changes in functional connectivity. A longitudinal study

of youths aged 6–20, showed that fractional anisotropy

(FA) was linked both to current WM capacity, but was

also predictive of future development of capacity [37�].
These results were further explored in a region-of-inter-

est based analysis using probabilistic tractography. This

confirmed that both striato-frontal and fronto-parietal

connections correlated with WM capacity, but also pre-

dicted future capacity [38].

Changes in connectivity with cognitive
training
Changes in functional connectivity during rest, in partic-

ular between frontal and parietal regions, is not only

associated with cognitive development, but also cognitive

training [39], including working memory training [40–42].

Instead of analyzing resting state connectivity, Kundu

et al. [43�] used EEG to measure how an impulse from

transcranial magnetic stimulation (TMS) over the parietal

cortex was propagated over the cortex. They found that

after working memory training, the impulse led to in-

creased signals in the frontal and temporal lobe, demon-

strating that training led to an increase in functional

connectivity, specifically during task performance.

Astle et al. [44�] used magnetic encephalography (MEG) to

analyze resting state connectivity before and after 5 weeks

of WM training in 13 children aged 8–11, and in 14 children

in an active control group. A group x time interaction was

found for connectivity between the right-hemisphere fron-

toparietal network and left lateral occipital cortex, with

increased connectivity for the training group. In a second

analysis, the gain in WM score was used as a covariate. This

gain was associated with increased connectivity in bi-

lateral frontoparietal networks that comprised bilateral
Current Opinion in Behavioral Sciences 2016, 10:97–101
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superior parietal cortex and frontal eye-fields. Both ana-

lyzes used the lower beta-band (13–20 Hz).

Conclusions
The hypothesis that development and training share

similar neuronal processes predict that if a mechanism

shows a significant effect for how much individuals

improve by training, it would be a significant predictor

also for how fast individuals develop during childhood.

This could be tested for a range of different processes, for

examples genetic variants that predict how much an

individual improves by training. A number of such var-

iants have been identified and the relation to develop-

ment could be tested [3,45–47].

There are similarities between the neural effects of

cognitive training and cognitive development, at least

regarding the skill learning/expertize phase of develop-

ment (Figure 1c). Strengthening of fronto-parietal con-

nectivity seems to be an important aspect of both these

processes. Cognitive training could provide a controlled

way to experimentally study the effect of environment on

brain development.

Future research will be needed to further characterize the

phase of interactive specialization for cognitive functions

and to understand the considerable inter-individual dif-

ferences in rate of development and response to training.

Studying the neural basis of cognitive training could be a

way to understand general principles of brain plasticity

relating to development of cognitive functions.
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