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Abstract

■ There is a long-standing interest in the determinants of suc-

cessful learning in children. “Grit” is an individual trait, reflect-

ing the ability to pursue long-term goals despite temporary

setbacks. Although grit is known to be predictive of future suc-

cess in real-world learning situations, an understanding of the

underlying neural basis and mechanisms is still lacking. Here

we show that grit in a sample of 6-year-old children (n = 55)

predicts the working memory improvement during 8 weeks of

training on working memory tasks ( p = .009). In a separate

neuroimaging analysis performed on a partially overlapping

sample (n = 27), we show that interindividual differences in

grit were associated with differences in the volume of nucleus

accumbens (peak voxel p = .021, x = 12, y = 11, z = −11).

This was also confirmed in a leave-one-out analysis of gray

matter density in the nucleus accumbens ( p = .018). The re-

sults can be related to previous animal research showing the

role of the nucleus accumbens to search out rewards regardless

of delays or obstacles. The results provide a putative neural

basis for grit and could contribute a cross-disciplinary connec-

tion of animal neuroscience to child psychology. ■

INTRODUCTION

The question of what makes children successful at learn-

ing has been discussed for decades. Motivation and cogni-

tive abilities are two aspects that are frequently investigated

as prerequisites of successful learning (Baddeley, 1992;

Dweck, 1986). In addition, personality traits may be im-

portant. Grit is a personality trait that quantifies a person’s

ability to persist with an activity despite setbacks and to

pursue long-term goals (Duckworth, Peterson, Matthews,

& Kelly, 2007). This trait predicts drop-out rates in college,

learning in the workplace, and success in spelling compe-

titions (Eskreis-Winkler, Shulman, Beal, & Duckworth,

2014; Duckworth & Quinn, 2009; Duckworth et al., 2007).

Grit has been associated with successful learning, but

it is based on subjective rating scales, and the neural

mechanisms by which grit would influence learning are

unclear. The effect of grit on success has been mediated

by longer time spent in training or learning (Duckworth

& Quinn, 2009; Duckworth et al., 2007), but it is unclear

if it really predicts more successful learning when the

amount of learning (or training) time is controlled.

The definition of grit has two aspects: motivation and

self-control. This suggests two alternative hypotheses for

the neural basis of grit. Motivation has mostly been stud-

ied in paradigms using external rewards, which depend

on dopamine release in the ventral striatum, including

the nucleus accumbens (NA; Tobler, Fiorillo, & Schultz,

2005; Wise, 2004; Schultz, Apicella, & Ljungberg, 1993).

The extent to which the dopaminergic system underlies

motivation independently of external rewards, such as

internal motivation or grit, is unknown. Self-control, on

the other hand, would be hypothesized to be related to

activation and morphology of the pFC, which provides

the neural basis for inhibition (Aron, Fletcher, Bullmore,

Sahakian, & Robbins, 2003), planning (Fuster, 2008), con-

scientiousness (Kapogiannis, Sutin, Davatzikos, Costa, &

Resnick, 2013), cognitive control (Miller & Cohen, 2001),

as well as impulsivity (Schilling et al., 2013). Although these

latter concepts and grit have been related to each other, it

has been consistently shown that grit explains an inde-

pendent share of variance relative to, for example, self-

control (Duckworth & Gross, 2014) and conscientiousness

(Duckworth et al., 2007). In particular, although con-

scientiousness comprises aspect of perseverance, it also

incorporates traits like responsibility, orderliness, and tradi-

tionalism (Roberts, Chernyshenko, Stark, & Goldberg,

2005); grit specifically focuses on perseverance and the

ability to stick to the goal in the context of high challenge

(Duckworth et al., 2007). As for self-control, Duckworth

and Gross (2014) suggested that conscientiousness and

self-control differ on their timescale: Although the former

would be related to the ability to stay focused despite dis-

traction within the time frame of a specific task, the latter

would be related to the capacity of sticking to a goal whose

achievement spans a longer time frame.

In this study, we aimed to (1) determine if grit affects

training and transfer gain in a study of cognitive training

in young children while training time and performance

on each trial can be closely monitored and (2) determineKarolinska Institute, Stockholm, Sweden
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the structural brain correlates of interindividual differ-

ences in grit with a well-validated method (Nemmi,

Sabatini, Rascol, & Peran, 2015; Patenaude, Smith,

Kennedy, & Jenkinson, 2011) in a subsample of the chil-

dren included in the behavioral analysis.

We studied 106 typically developing, 6-year-old chil-

dren who had volunteered to participate in an 8-week

training program comprising working memory (WM)

and reading, or WM and math, or math and reading, or

reading-only adaptive training (Brehmer, Westerberg, &

Backman, 2012; Holmes, Gathercole, & Dunning, 2009;

Klingberg et al., 2005).

METHODS

Participants

This study included 106 children aged 6 years (78–

87 months) recruited from 11 schools in the Stockholm

County.

For the purpose of this study, three subsamples were

studied:

1. One hundred fifteen children participated overall in

the study. Data from 106 participants (mean age =

80.88 months, SD = 3.62; socioeconomic status

[SES] = 4.44, SD= 1.05; 59 boys) who trained 32 days

or more (32–43 days) were used to test the effect of

WM training (n = 55, comprising the participants

who have trained WM and reading, or WM and math)

compared with reading-only training (used as an active

control, n = 51).

2. Of the 106 participants, 55 children participated in

WM training and also had a grit measure available

(mean age = 80.96 months, SD = 3.70; SES = 4.58,

SD = 0.90; 24 boys). Data from this subsample were

used to test the association between grit and progress

in the trained WM tasks (training gain) and untrained

task (transfer gain), which were performed before

and after completion of the training program. The

same subsample was used to test associations be-

tween performance on WM tests and training enjoy-

ment (i.e., evaluation questions) and between training

gain and fluid intelligence.

3. All participants received a letter of invitation to

partake in the neuroimaging part of the study. Of

106 participants, 36 participants (mean age =

81.96 months, SD = 3.56; SES = 4.43, SD = 0.89;

18 boys) volunteered to participate in the imaging

protocol, which included a quality controlled T1 scan

that was segmented. The MRI acquisition was per-

formed before the beginning of the training. Twenty-

seven participants had available T1. Data from this

subsample was used to test the association between

grit and striatal shape and associations between grit

and prefrontal cortical thickness. This subsample was

also used to determine the association between grit

and gray matter density.

The study was approved by the research ethics committee

at Karolinska University Hospital, Stockholm. Informed

consent was provided by both parents by returning a

signed form that was sent to them by mail together with

information about the study and the contact information

of the person responsible for the study. Information

about SES is reported below.

Cognitive Training

Participants were assigned to one of four training groups,

which included 30 min of training for each school day for

8 weeks. The training took place in the classes, where

one teacher per class was in charge of monitoring the

compliance of the children with the training. In the limit

of possible and in accordance with academic needs, the

training took place at approximately the same time of

the day.

Participants were assigned to either train 50% WM

and 50% mathematics, or 50% WM and 50% reading,

or 50% mathematics and 50% reading, or 100% reading.

Children were randomly assigned to the training groups

after stratification for math and WM performance. Spe-

cifically, we ordered all participants based on baseline

performance in mathematics and, if they had similar

scores, based on performance on the WM tasks. The

first four participants on the list were then randomized

to each of the four conditions; then the next group of

four participants was randomized, and so on. Support-

ing Table 3 reports the distribution of gender and class-

room, together with average age and grit breakdown by

training groups, together with the relevant statistic for

comparison. In the WM/mathematics group, WM/read-

ing group, and mathematics/reading groups, the pro-

gram automatically ensured that the child participated

in training of the second domain by automatically

switching training plan after 15 min of training and

automatically logging out after 30 min of training. This

ensured that all participants performed the same

amount of training. The level of task difficulty was

dynamically adapted according to a built-in algorithm

that took the participant’s performance into account

to ensure that participants trained at the limit of their

capacity. The WM training consisted of four different

tasks that required the participant to immediately re-

member and repeat a sequence of dots or squares pre-

sented. In the mathematical training, the participants

engaged in tasks such as deciding where on a number

line a number would fall and how many individuals

needed to be added to a group of individuals to make

10 individuals. Finally, during the reading training, the

participants matched sounds to letters, were asked to

spell words, matched words that rhymed, and completed

crossword puzzles. More details about the training

structure and tasks are reported in the Supporting Informa-

tion (SI; paragraph Structure of the training and Training

Tasks).
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Transfer Gain: Pre- and Posttraining Assessment

To test transfer gain, WM capacity was tested before

and after the 8-week training schedule using a visuo-

spatial WM grid task presented on the iPad. During the

WM task, participants were asked to repeat a sequence

of cues presented within a 4 × 4 grid. The first sequence

showed two dots, and each time the participant correctly

repeated a sequence, the length was increased of one unit.

The sequences were generated automatically, minimiz-

ing the possibility that the participant were presented

with the same sequence twice. This task is based on the

Automatic Working Memory Assessment (Alloway, 2007).

Training Gain

To quantify the training gains made by the 55 participants

who participated in WM training, the training period was

divided into four quarters (Days 1–7, Days 8–15, Days

16–23, and Days 24–32). A grand average and standard

deviation of the level reached on each task (taking into

account only the correct trials), for all participants on

all days, were calculated. These statistics were used to

transform the average level achieved by each participant

in each quarter into z scores. The z scores of the available

tasks in each quarter were then averaged to obtain a

compound performance index for each quarter. The

compound measures of the level reached by the partici-

pant during the first quarter and the fourth quarter were

used to test for training gains.

Grit

Grit was measured using the 12-item grit scale presented

in Duckworth et al. (2007), completed by the child’s

teacher. Three questions were modified with regard to

timescale to be more suitable for 6-year-old children.

The original scale together with the modified questions

can be found in the SI (Grit questionnaire). The grit

summary scores were normally distributed, and the scale

had good internal consistency with Cronbach’s alpha =

.91 as measured by interitem correlations. In a separate

sample of eleven 7-year-olds for whom grit was rated by

two independent teachers, we identified an interrater

reliability of .65. Higher scores indicate more grit.

Evaluation Questions

During the training, participants answered two questions

each day on their iPads to evaluate their enjoyment of the

training. The evaluation questions are reported in the SI

(Evaluation Questions).

Fluid Intelligence

Fluid intelligence was estimated using the matrices sub-

test of WISC-IV. Participants are asked to complete a

series of matrices of an abstract or concrete figure with

an empty square. For each matrix, they need to choose

the one correct answer from a set of alternatives. Standard

scores were used.

Socioeconomic Status

SES was calculated according to the guidelines of Svenska

Statistiska Centralbyrån (the Swedish central statistical

bureau). For each child, the monthly income of the parent

with the higher salary was asked, and the SES was coded

as follows: less than 13,000 SEK (∼1500 USD) was coded

as 1, 13,000–22,5000 SEK (∼1500–2600 USD) was coded as

2, 22,500–30,000 SEK (2600–3500 USD) was coded as 3,

30,000–40,000 SEK (3500–4600 USD) was coded as 4,

and more than 40,000 SEK (4600 USD) was coded as 5.

Comparison of the Behavioral Sample and the

Neuroimaging Subsample

We performed several analyses to ensure that the neuro-

imaging sample was representative of the behavioral one.

These analyses are reported in the SI (Comparison of the

behavioral sample and the neuroimaging subsample).

Behavioral Analyses

The training gains of the WM training group were tested

using a paired t test of z scores reflecting performance on

the WM tasks at the first and fourth quarters.

The effect of training on the transfer task was tested

using the following mixed linear model:

WMgridij ¼ β0 þ β1TrainingGroup WM=Readingð Þ

þ β2Time baseline=postð Þ þ β3TrainingGroup

� Timeþ u0i þ u1iTimeþ εij

The association of grit to training gains and transfer gains

was tested using the following linear models:

4thQz ¼ β0 þ β1Grit þ β21
stQz þ ε

WMgridpost ¼ β0 þ β1Grit þ β2WMgridbaseline þ ε

Similar models were used to test the effect of enjoyment

of the training and fluid intelligence as measured by the

matrix reasoning task on trained and untrained tasks.

A mixed linear model was used to test the effect of the

interaction between group (high and low grit) and time

on the training gains as follows:

Z scoresij ¼ β0 þ β1Group High=Low Gritð Þ

þ β2Quarter 1stQz=2ndQz=3rdQz=4thQzð Þ
þ β3Group High=Low Gritð Þ � Timeþ u0i

þ u1iTimeþ εij

Differences in accuracy at the different loads of the WM

grid task (i.e., transfer task) in each quarter of the 8-week

Nemmi et al. 3



training program were tested using a two-sample t test

within each quarter and each level.

As a follow-up analyses, we tested the association be-

tween transfer gain and grit also within the subsample of

participants that have trained math. The aim was to test if

the effect of grit on training gain was specific for WM or if

it could be a more general mechanism. Details on these

analyses are reported in the SI (Relationship between grit

and training in the subsample training math).

Throughout themanuscript, the effect sizes are reported

either using Cohen’s d or through standardized beta co-

efficient for linear model. For mixed linear models, the

unstandardized parameter estimates together with stan-

dard errors are reported.

Neuroimaging Parameters

Magnetic resonance (MR) imaging data were acquired on

a 3-T MR medical scanner (Discovery General Electric) at

the Karolinska Hospital in Solna, Sweden. The scanner

was equipped with an eight-channel phased array receiv-

ing coil. We acquired the following sequences:

1. T1-weighted images were acquired with 1-mm3 iso-

tropic voxel size (echo time [TE] = 3.06 msec, repeti-

tion time [TR] = 7.9 msec, inversion time = 450 msec,

field of view [FoV] = 24 cm, 176 axial slices, flip angle

of 12°). T1 data were available for 27 participants.

2. Diffusion weighted imaging sequences were per-

formed using a spin echo imaging tensor sequence

(TE= 86msec, TR= 7400msec, FoV= 22 cm, 63 axial

slices, 2.3 mm thickness, number of diffusion direc-

tions = 32). Diffusion weighted imaging data were

available for 23 participants.

3. Functional MR sequences were performed with a

gradient-echo pulse sequence using a voxel size of

3 × 3 mm (TE = 30 msec, TR = 2200 msec, FoV =

22 cm, 46 axial slices, 3 mm thickness, flip angle of

70°). A total of 130 volumes were acquired. fMRI data

were available for 23 participants.

Neuroimaging Analysis

Subcortical Nuclei Segmentation

T1 3-D images were skull-stripped using the Brain Extrac-

tion Tool (Smith, 2002). The caudate nucleus, putamen,

and NA were automatically segmented from T1 images

using the FMRIB imaging registration and segmentation

tool (FIRST; Patenaude et al., 2011; www.fmrib.ox.ac.

uk/fsl/first/index.html). All of the free parameters were

set at their default values based on prior optimization

of these parameters (Patenaude et al., 2011; Patenaude,

2007). FIRST generated several coronal, axial, and sagittal

slices with the superimposed segmented structure dis-

played, which enabled quality control of the segmenta-

tion. We segmented bilateral putamen, caudate nucleus,

and NA.

Local Striatal Volume Analysis

The segmented subcortical nuclei were modeled as

meshes, which are sets of vertices that describe the

shape of the nuclei and retain the same spatial location

between participants. The number of vertices differs

from one structure to another but is consistent between

participants for the same structure. In the shape analysis

performed with FIRST, the meshes of the nuclei for the

different participants are reconstructed in MNI space to

align them. A mean shape of the sample is then calcu-

lated. For each vertex of each structure, the distance be-

tween that vertex and the same vertex in the mean shape

was calculated to provide a measure of local volume

(expansion/contraction relative to the mean shape of

the structure in the sample). All meshes for each struc-

ture were reconstructed as 3-D volumes using inter-

polation to provide an image of each structure containing

a signed value (distance from mean shape) in each voxel

belonging to the structure’s border. These images were

used in nonparametric analyses of associations between

shape and behavioral variables.

Correlation between Local Volume and Grit

We tested the association between grit and striatal shape

using a linear model, including one vector for the grit

summary measure. The significance of the correlation

was tested with a nonparametric permutation test as

implemented in the randomize tool, which is part of

the FSL package (Hayasaka & Nichols, 2003). This tool

compares the strength of the observed correlation with

a null distribution obtained by a Monte Carlo permutation

(5000 permutations) of the dependent variable (i.e., local

volume). At the same time, the randomize procedure

accounts for multiple comparisons using the threshold free

cluster enhancement technique (Smith & Nichols, 2009).

The statistical threshold was set to 0.05 corrected for

multiple comparisons. The same approach was used to test

the association between local volume and attitudes toward

training and evaluation questions.

The localization was confirmed using the Oxford-GSK-

Imanova Structural–Anatomical Striatal Atlas (Tziortzi

et al., 2011).

We also tested the association between grit and striatal

shape jointly for the three structures in the right hemi-

sphere and for the ensemble of six structures (i.e., in

both hemisphere) using PALM (Winkler, Ridgway,

Webster, Smith, & Nichols, 2014), a statistical tool that

enables permutation inferences over several structures

(or modalities) at the same time, using a method similar

to the one used by the FSL randomize tool. For this anal-

ysis, we had to use a stricter voxel-based correction for

multiple comparisons rather than a more appropriate

4 Journal of Cognitive Neuroscience Volume X, Number Y



and more sensitive cluster-based correction. In fact, be-

cause of the nature of the cluster-based inference, the

probability of false negatives becomes unfairly inflated

for the smaller structures, when structures with different

sizes are jointly tested. In particular, bigger structures

allow space for larger clusters, which then dominate

the distribution of the maximum. The clusters in the

smaller structures tend to be toward the right tail of that

distribution, getting smaller significance. In mathematical

terms, the cluster-based method’s lack of pivotality pre-

cludes its use for inference when structures of different

sizes are used (Winkler et al., 2014).

In summary, association between grit and striatum was

tested in six structures, at first separately and then jointly

(i.e., performing multiple comparisons between regions).

Cross-validation of the Association between Local

Volume in the NA and Grit

To confirm the association between grit and local vol-

ume, we performed a leave-one-out cross-validation.

We performed the nonparametric analysis 27 times, each

time using only 26 of the 27 participants in the sub-

sample, making 5000 permutations using 26 participants.

In each analysis, we identified a peak cluster (statistical

threshold was set to p < .1 corrected for multiple com-

parisons to compensate for the slight anatomical differ-

ences that could exist between the average shapes of

the 27 analysis), and then we extracted the shape value

pertaining to the 27th participant from the NA cluster

found in each analysis. The confirmatory analysis was

then made by correlating the shape values extracted

from this cross-validation with grit. Note that in the cross-

validated analysis the key p value is not the one used to

create the cluster (i.e., p = .1) but the p value of the

correlation between the extracted values and grit. The

statistical threshold for these latter analyses was set to

the usual p < .05.

To cross-validate the spatial location of the cluster of

association, we binarized and averaged the 27 clusters re-

sulting from the cross-validation (each one calculated

using a subsample of 26 participants). Then, we thre-

sholded the resulting average cluster at a value of 0.99

(i.e., a voxel was present in all the 27 clusters), and we

overlap it to the original cluster. The overlap index was

calculated as

Overlap Index ¼ Original Cluster ∩ CV Cluster=
Original Cluster ∪ CV Cluster

Tissue Type Segmentation and Gray Matter Density

Association with Grit and Training Gain

We segmented gray matter, white matter, and CSF from

the T1-weighted images using FAST (Zhang, Brady, &

Smith, 2001). To test the hypothesis that the positive

association between shape values and grit was related

to increased gray matter volume in this region, we used

the cross-validation method outlined above to extract

gray matter density values in the cluster we found in

the right NA. We used the same clusters found in the

cross-validation of the association between local volume

and grit, using the inverse transform of the warp map-

ping the single subject T1 to MNI template to register

these clusters in subject space. From this registered clus-

ters, we extracted gray matter density and correlated these

values with the grit summary score.

Cortical Thickness and Grit

Cortical reconstruction and calculation of cortical thick-

ness were performed with the Freesurfer image analysis

suite, which is documented and freely available for down-

load online (surfer.nmr.mgh.harvard.edu). The details of

these procedures are described in prior publications

(Han et al., 2006; Segonne et al., 2004; Fischl & Dale,

2000; Dale, Fischl, & Sereno, 1999; Fischl, Sereno, &

Dale, 1999; Fischl, Sereno, Tootell, & Dale, 1999; Dale

& Sereno, 1993). Cortical thickness data were smoothed

with a kernel of 10 mm FWHM, as commonly done in lit-

erature. Data from all participants were projected onto

the fslaverage template by means of the standard free-

surfer algorithm (Yeo et al., 2010; Fischl, Sereno, Tootell,

et al., 1999). The same design matrix used for assessing

associations between shape and grit in the striatum was

used for assessing vertex-wise associations between grit

and thickness by means of univariate statistic.

We created two ROIs for the frontal cortex: one includ-

ing the entire frontal lobe excluding motor areas and the

other only including the lateral surface of the frontal lobe.

Association between grit and vertex-wise cortical thick-

ness was tested using a liner model. Cluster-based correc-

tion for multiple comparisons was performed as a small

volume correction (i.e., only inside the mask) for both

the frontal cortex masks using Monte Carlo simulation.

The statistical threshold was set to a liberal p = .1.

In summary, the association between grit and cortical

thickness in the frontal lobe was tested in two ROIs.

The use of two different software for the vertex analy-

sis of the subcortical nuclei (FIRST) and of cortical thick-

ness (FreeSurfer) is related to the peculiarity of the two

software and the type of analyses we wanted to run.

FIRST has been specifically developed for the segmen-

tation and the shape analyses of subcortical nuclei and

provide a direct and validated method for vertex-wise

comparison within the subcortical nuclei (Patenaude

et al., 2011). FreeSurfer, on the other hand, provides a

tessellation of the cortex (i.e., a vertex representation

of the cortical ribbon) but does not provide the same

representation for the subcortical nuclei (i.e., the sub-

cortical nuclei in the FreeSurfer pipeline are labeled ROIs).

This means that, although vertex-wise analyses of the

cortex are implemented and validated within FreeSurfer,

Nemmi et al. 5



the same is not true for vertex-wise analyses of the sub-

cortical nuclei.

Tractography

We corrected for eddy currents and head motion in all

DW images using the FSL software (fsl.fmrib.ox.ac.uk/

fsl/fslwiki/). The diffusion tensor parameters were then

estimated for each voxel and DTI, and fractional aniso-

tropy (FA) and radial diffusivity (RD) images were con-

structed. Nonlinear registration was carried out using the

Tract-based Spatial Statistics (TBSS) script (Smith et al.,

2006) to align all FA images to the mean FA skeleton.

With the aim to observe the anatomical connectivity of

the cluster of correlation between local volume and grit

in the right NA, we used this cluster as a seed point for

probabilistic tractography. The cluster was first registered

to the mean FA image, and then the back projection of

the TBSS method was used to register the cluster into the

DTI space of each individual. Probabilistic tractography

was thus performed in the single-subject DTI space, ini-

tiating from all voxels within the clusters using the prob-

trackx tool of FDT v2.0 (Behrens, Berg, Jbabdi, Rushworth,

& Woolrich, 2007; Behrens et al., 2003). For fiber track-

ing, we use the default parameters (5000 streamline sam-

ples, step length = 0.5 mm, curvature threshold = 0.2). At

the individual level, the voxels with low connectivity prob-

ability were excluded using a threshold of 5% of the

samples (Leh, Johansen-Berg, & Ptito, 2006). Subsequently,

all of the traced white matter tracts were aligned using the

TBSS method for non-FA images and then binarized and

averaged across participants. For tractography, the sample

comprised 23 participants for whom DTI data were avail-

able. As a more exploratory analysis following the results

found in the NA using structural data (see Results), we

extracted FA and RD from the traced tract and we perform

a 0th order correlation between these two measures and

grit.

BOLD Signal and Grit

Functional data were available for a subsample of 23 par-

ticipants. These participants performed a WM task while

in the MRI scanner. The task was similar to the WM grid

task used for assessing WM, as the participants saw se-

quences of two (Load 2) or four (Load 4) dots appearing

within a 4 by 4 grid. However, at variance with the behav-

ioral task, the fMRI task was a forced two-choice task.

Specifically, the participants saw a sequence of spatial

position, then a question mark appeared, and the partic-

ipant had to decide if the question mark was in one of

the square included in the presented sequence by press-

ing a two-key pad. The control task was visually similar to

the WM task (Control 2, Control 4), but the sequences

presented were fixed (i.e., the mark appeared in the

upper left and upper right corners of the grid for Load 2

control and in all the corners of the grid for Load 4 con-

trol). During the control task, question marks always ap-

peared in the same position. Furthermore, the mark used

for showing the sequences was a drawing of the planet

earth during the experimental task, whereas it was a draw-

ing of the sun during the control task. The participants

were instructed to always press the NO button during

the control task. Answers and RTs were registered.

Each participant underwent two runs with 32 trials in

each run (8 Load 2 trials, 8 Load 4 trials, 8 Control 2 trials,

8 Control 4 trials). Load 2 and Control 2 trials lasted for

6000 msec, whereas Load 4 and Control 4 trials lasted for

8000 msec. Each trial was followed by an intertrial interval

of 2 sec. Within each sequence, the planet that marked

the spatial positions appeared, for each position, for

500 msec, followed by a 500-msec delay in which the grid

was empty. Before the last position cued and the appear-

ance of the question mark, there was a 1000-msec delay.

The question mark remained on the screen for 3000 msec,

which was the total time allowed for an answer. The exper-

imental and the control tasks were presented separately in

a block design: Each block comprised four sequences. The

order of the tasks was the same for all participants: Load 2

control, Load 2 experimental, Load 4 control, Load 4 exper-

imental; this sequence was repeated twice within each run.

One hundred and thirty functional volumes were sub-

mitted to a standard preprocessing pipeline performed in

SPM8 (www.fil.ion.ucl.ac.uk/spm/software/spm8/ ),

including slice timing correction, realignment, normali-

zation to the MNI standard template, and smoothing with

a FWHM kernel of 8 mm. The toolbox Artifact Detection

Tools (ART) was used to identify volumes corrupted by

excessive motion (defined as a frame-wise displacement >

2 mm or a root mean squared change in bold signal > 9).

For first-level analysis, separated boxcar regressor modeled

trials of the WM and the control task with a duration equal

to the trials duration (6000 and 8000 msec respectively for

Loads 2 and 8) plus the RT to take into account the whole

time on task period. These regressors were convolved

with the canonical hemodynamic response function, and

together with regressors representing residual move-

ment related artifacts, volumes marked as corrupted by

the ART toolbox and the mean over scans represented

the full model for each session. A first-level contrast of

WM (Load 2 and Load 4) > Control (Load 2 and Load

4) was calculated for each participant. The mean beta

weight for this contrast was extracted, for each partici-

pant, from the cluster of association we found between

shape and grit in the ventral striatum. As a follow-up ex-

ploratory analysis to the results found in the NA using

structural data (see Results), a 0th order correlation was

then calculated between mean beta weight and grit.

Movement Confounds Analysis

To control for a possible confounding effect of movement

during scanning, we used the functional imaging realign-

ment procedure provided by the script fsl_motion_outliers
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( Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012)

to calculate the frame-wise displacement (FD). FD is a

summary measure of between-volume movement that

has been used to quantify movement during acquisition

and to censure volume with high movement (Siegel

et al., 2014; Power, Barnes, Snyder, Schlaggar, & Petersen,

2012). For our purpose, FD can be regarded as a proxy of

participants’ movements during the T1 acquisition. We

calculated FD for the 17 participants whose functional

imaging and local volume in the right accumbens cluster

were available, and we examined the association between

these two measures.

RESULTS

Effect of Training

Overall, children who had practiced WM tasks (n = 55,

WM training) improved significantly on the trained tasks

(last quarter of training period vs. first quarter of training

period; p < .001, Cohen’s d = 1.07 [95% CI 0.66, 1.47])

and showed a significantly greater improvement ( p< .001,

parameter estimate = 2.43 (0.39); Figure 1A) on the trans-

fer task compared with children in the control group (n =

55 for the children who trained WM, n = 51 for the

children who have not trained WM).

Effect of Grit on Training and Transfer Gains

At first, we calculated the association between WM at

baseline and grit, finding a trend for the transfer task

(r = .24, p = .072) and a significant association for the

training tasks during the first quarter of the training

period (r = .34, p = .009; n = 55, WM training).

We then analyzed if grit scores can explain interindi-

vidual differences in how much children improved dur-

ing training, while controlling for baseline performance.

The grit score was significantly associated with both train-

ing gains ( p = .012, β = 0.21) and transfer gains ( p =

.009, β = 0.31) corrected for baseline performance

(Figure 1B). In both models, baseline performance was

also significantly related to gains ( p < .001 for both

models, β = 0.71 for training gains, and β = 0.44 for

transfer gains). Importantly, the association between grit

and gains remained significant when correcting for the

Figure 1. Behavioral analyses.

(A) Performance on the

transfer task for the WM training

and control groups (means and

SE ). There was a significant

interaction between time

(baseline vs. posttraining) and

group (WM training vs. control)

p < .001. (B) Grit was

significantly correlated with

improvement on the WM

transfer task within the WM

training group ( p = .01).

WM improvement was

calculated as the residuals

in a linear model with transfer

task performance after training

as the dependent variable

and transfer task performance

at baseline as the independent

variable to correct for any

differences at baseline.

(C) Mean z scores (±SE ) for

performance on the trained

WM tasks for the high- and

low-grit participants based on

a median split. The groups

did not differ at baseline,

but a significant difference

emerged with increasing

training. (D) Mean (±SE )

for one of the training task

divided by quarters, levels,

and groups (high vs. low grit).

*p < .05, **p < .01,

***p < .001.
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total amount of time spent training ( p = .013 for training

gains and p= .005 for transfer gains; n= 55, WM training

for all analyses).

To further explore the effect of grit on learning, par-

ticipants in the WM training group were divided into a

low-grit group and a high-grit group using a median split.

When we evaluated performance over the four quarters

of the 8-week training program, we found a significant

effect of time ( p < .001, parameter estimate = .38 (0.02))

and an interaction between grit and time ( p= .038, param-

eter estimate = .07 (0.03); Figure 1C). If grit entered the

model as a continuous variable rather than as a categor-

ical variable, the crucial interaction between grit and time

remained significant ( p = .007, parameter estimate =

.004 (0.001)). When performance was further examined

based on the different WM loads, that is, difficulty level,

there was a tendency for low- and high-grit participants

to differ on lower loads at the beginning of the training

program and higher loads at the end of training (Figure 1D;

n = 55 WM training for all analyses). Grit was thus asso-

ciated with gradual improvement in training over time,

especially on more difficult items.

As for the math training, also in this group there was a

positive significant effect of grit on transfer gain ( p =

.016, β = 0.27; n = 51, children who trained math).

Specificity of the Effect of Grit on Training and

Transfer Gains

To evaluate the specificity of these findings, we also ana-

lyzed the scores from a set of questions intended to mea-

sure children enjoyment during training. During the

training, the participants were asked specific questions

each day regarding how fun and how difficult they found

the tasks (i.e., evaluation questions). The answers to the

evaluation questions during training were not associated

with training or transfer gains (respectively p = .66 and

p = .14, β = 0.03 and β = −0.17; n = 55, WM training).

Fluid intelligence was estimated as performance on a

matrix reasoning task from the Wechsler Intelligence

Scale for Children, version III. This measure was not

associated with training gain ( p = .29, β = 0.09) nor

transfer gain ( p = .085, β = 0.22) in the WM training

group (n = 55, WM training).

Taken together, these results show that enjoyment of

the training and fluid intelligence had no effect on train-

ing and transfer gain, suggesting a specific role for grit.

Evaluation questions and fluid intelligence were also

entered as nuisance variables in models including grit

as the variable of interest; these models and their results

are reported in the SI (Further analyses assessing the

specificity of the association between grit and training

gain).

Table 1 reports the average (±SD) of the cognitive

measures used in the behavioral analyses. Table 2 reports

the correlations between the same measures. (Supple-

mentary Tables 1 and 2 show similar table for the neuro-

imaging sample.) Supporting Table 4 reports the sample

size for each analysis, break down for training groups.

Neural Correlates of Grit

Grit was significantly associated only with the shape of

the ventral part of the striatum, corresponding to the NA

( p < .05 corrected for multiple comparisons, peak voxel

p = .021, x = 12, y = 11, z = −11, size = 38 mm3;

Figure 2A, B). This association was also confirmed using

a leave-one-out cross-validation (r = .42, p = .027;

Figure 2D). We also confirmed the spatial location of

the cluster by means of cross-validation. We calculated

the spatial overlap between the 27 clusters resulting from

the cross-validation procedure (see Methods) and the

cluster found in the vertex-wise analysis. The clusters

overlapped by 76%.

To further confirm our result, we tested the association

between shape and grit jointly for all the subcortical

Table 1. Cognitive Measures

Measure Mean (SD)

Grit 44.4 (±9.6)

Fluid intelligence (matrix) 12.7 (±3.6)

Evaluation questions 3.1 (±0.7)

Mean (SD) of the cognitive measures used in this study.

Table 2. Correlation Matrix

Grit Hyperactivity Fluid Intelligence Attitude toward Training Evaluation of Training Sample Size

Grit 1 −.43*** .28** .23* .28** 55

Fluid intelligence .28 −.31 1 .13 .23** 55

Evaluation .28 −.31 .23 .35 1 55

The table reports the correlations between the cognitive measures used in the study. Correlation in bold survive family-wise error.

*p < .05.

**p < .01.

***p < .001.
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structures of the right hemisphere, where the original

cluster was found, using a strict voxel-based correction

rather than the more sensitive cluster-based correction.

The peak voxel (x = 12, y = 11, z = −11) was significant

( p = .038; when the analysis was performed on the bi-

lateral striatum, the same voxel reached a significance of

p = .072). For all these analyses, the direction of the

association was positive (i.e., participants with greater

local volume in the cluster of association showed higher

grit).

The relationship between NA shape and grit is as-

sumed to reflect localized differences in gray matter vol-

ume. To verify this, we used the cluster from the shape

analysis as ROI applied to the T1-weighted images and

performed a leave-one-out cross-validation of the cor-

relation between gray matter density in the ROI and grit.

This analysis confirmed that gray matter density was

significantly associated with grit (r = .44, p = .018), con-

sistent with the interpretation that the NA local shape

associated with grit corresponds to a local increase in

gray matter density. These analyses suggest that local

NA volume is associated with grit in children. Further-

more, we tested the association between shape value in

the NA cluster and improvement in the children who had

trained WM and had available imaging data (n = 13)

using 0th order correlation. Although not significant,

the correlations were in the expected direction (training

gain: r = .46, p = .09; transfer gain: r = .29, p = .3).

To qualitatively characterize the anatomy of the striatal

region where grit was associated with shape, we used

tract tracing based on diffusion weighted images to iden-

tify connectivity between NA and OFC. As expected, this

showed strong connections between NA and OFC

(Figure 2D), which is implicated in processing of external

rewards in both human (Sescousse, Caldu, Segura, &

Dreher, 2013) and animal studies (Rudebeck & Murray,

2011).

As a follow-up to the association between structure of

the NA and grit, we extracted FA and RD from the tract

traced using the cluster in the NA as seed, as well as

BOLD signal during a WM task from the same cluster.

FA and RD extracted from the traced tract were not asso-

ciated with grit ( p > .2). Similarly, BOLD signal during

performance of a WM task was not associated with grit

( p > .36).

Grit was not associated with cortical thickness in the

frontal cortex (either broadly or restrictedly defined, see

Methods), as assessed using vertex-wise analysis ( p> .1).

Movement Confound Analysis

We found a near-zero association between FD and local

volume values (r = .09, p = .72). In addition, we tested

the association between FD and grit in the same sample

and found that the correlation between the two mea-

sures was nonsignificant (r = −.29, p = .22). Although

this is just a subsample of the participants included in

the analysis to test the association between local volume

and grit, these results suggest that movements during

scanning are not associated with local volume values.

DISCUSSION

We found that our WM training was effective in improv-

ing WM of children on both the training tasks and a trans-

fer measure. Although the control group also showed an

improvement in the transfer measure, the WM training

group improved significantly more than the control

group. The improvement in the control group could have

been related to a test–retest effect or to some nonspecific

effect of the training regime they were submitted. This

result underlines once again the importance of including

an active control group in training studies. Our results

show that grit is associated with improvements during

and after WM training in 6-year-old children. These find-

ings were specific in the sense that training and transfer

gains were not related to measures of enjoyment of the

training or fluid intelligence. Although baseline perfor-

mance was identified as a significant predictor of training

and transfer gains, the association between grit and WM

Figure 2. Neural associations to grit. (A) Cluster of correlation between

NA shape values and grit scores superimposed to the standard MNI

template. The same cluster is shown in (B) the sagittal section

(x = 12) and (C) the coronal section ( y = 11). (D) Scatterplot of

the cross-validated correlation between shape values and grit scores

(r = .42, p = .027). (E) Probabilistic tractography using the cluster of

correlation between shape values and grit scores in the right NA.

The reconstructed tract has been averaged and thresholded to show

only those voxels in which the tract was present in the 95% of the

participants. Seed point is shown in blue.
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improvement remains significant after correcting for base-

line performance on WM tasks and reasoning ability in

the investigated sample. The positive association be-

tween grit and transfer gain was present also for math

in the math training group. These results suggest that

the effect of grit is general and not limited to WM train-

ing. In turn, this would be expected if, as we propose,

grit act as a motivational drive to overcome difficulties

and pursue of highly valuable rewards even in front of high

effort.

In a second study involving a subsample of the chil-

dren included in the behavioral analysis, grit was found

to be associated with the shape and size of NA, a struc-

ture related to motivation and reward seeking. To our

knowledge, this is the first study to identify a personality

trait that can predict improvements during cognitive

training, providing at the same time a plausible neural

substrate for the former. Although a direct association

could not be proven between shape in the NA and im-

provement in the WM group, positive nonsignificant as-

sociation were found between shape in the NA and

both training and transfer gain.

Grit contains two components: First, grit is related to

motivation and drive to pursue the same goal over an

extended period of time (Duckworth & Quinn, 2009;

Duckworth et al., 2007). Second, it is related to self-

control, planning, and conscientiousness, which enable

the individual to stick to certain goals in the presence

of distractions, difficulties, and setbacks (Duckworth &

Quinn, 2009; Duckworth et al., 2007). We hypothesized

that the structural neural underpinnings of grit could

include either the ventral striatum, which is related to

motivation and reward seeking, or prefrontal areas, pre-

viously related to self-control and conscientiousness

(Kapogiannis et al., 2013; DeYoung et al., 2010). We

found that grit was associated to the size and shape of

the NA but not with cortical thickness of the frontal

cortex, although the lack of results for the latter could

be related to low statistical power associated with a small

sample size. The NA is not directly responsible for

experiencing rewards or feelings of euphoria or “liking,”

as shown by animal studies where lesions of the NA

disrupt drug seeking but does not abolish drug-taking

behavior (Salamone & Correa, 2012; Everitt & Robbins,

2005; Ito, Robbins, & Everitt, 2004; Hutcheson, Parkinson,

Robbins, & Everitt, 2001). Specifically, NA lesions result in

a preference for low valued, immediately available re-

wards in face of more highly valued rewards available only

after a delay or delivered only after a higher effort (Salamone

& Correa, 2012; Denk et al., 2005; Salamone et al., 1991). In

animal studies, the NA thus seems vital for the drive to

search or work for future rewards. This characteristic is

very similar to the definition of grit as a pursuit of long-

term goals.

Previous neuroimaging results implicate the striatum

in training-related WM plasticity. In particular, increased

striatal activity has been associated with improvement in

WM following training (Dahlin, Neely, Larsson, Backman,

& Nyberg, 2008; Olesen, Westerberg, & Klingberg, 2004),

although it is unclear if those regions overlap with the

cluster identified in this study.

A tentative interpretation is that variability in grit (and

possibly other personality traits related to motivation) is

related to the variability of dopaminergic availability or

sensitivity (e.g., receptor density) in the ventral striatum.

This variability could influence the ability to stick to one

task or to put effort into a task for long periods of time,

which may also make gritty children benefit more from

cognitive training. A recent study found that the rs1800497

polymorphism on the DRD2/ANKK1 gene was asso-

ciated with improvement during WM training (Soderqvist,

Matsson, Peyrard-Janvid, Kere, & Klingberg, 2014). A

follow-up study found that an interaction between the

same polymorphism and ventral striatal BOLD response

was associated with WM capacity (Nymberg et al., 2014).

This study has several limitations. First, the grit ques-

tionnaire has been validated on adults and adolescents

(Eskreis-Winkler et al., 2014; Duckworth & Quinn,

2009; Duckworth et al., 2007), but it has not been used

in 6-year-old children. However, the internal consistency

in the whole sample was alpha = .91, which shows a high

reliability, also when compared with the results in adults

using the same scale (Duckworth et al., 2007). Moreover,

goal-directed behavior, the main focus of grit, can be

hard to recognize for 6-year-old children. This is the main

reason why we chose to have the teachers rate the chil-

dren. We thought they are better suited for scoring grit

than children themselves (who could have had a hard

time with introspection) or parents (who may not ob-

serve their children during structured challenges as the

one schooling involves). Second, although two measures

were included and found not to correlate with training

gains (enjoyment of the training and fluid intelligence),

there were practical limitations to the number of mea-

sures that could be completed in one study. Future stud-

ies could include estimates of intrinsic motivation as well

as measure of inhibitory control, self-control, and consci-

entiousness. Conscientiousness, in particular, is a person-

ality trait that has repeatedly been found to correlate with

grit (Eskreis-Winkler et al., 2014; Duckworth & Quinn,

2009; Duckworth et al., 2007); however, it has been

shown that grit and conscientiousness explain indepen-

dent shares of variance in years of education and GPA

score (Duckworth et al., 2007). The extent to which grit

and conscientiousness share a common neural substrate

is unknown. Finally, we do not draw any strong con-

clusions from the lack of association between grit and

cortical thickness in the frontal lobe in this study. Inter-

individual differences in functional anatomy of the frontal

lobe could be larger than in a smaller and well-defined

structure as the NA, decreasing the probability of observ-

ing an association to grit.

In conclusion, this study shows that grit is associated

with improvement after WM training, providing at the
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same time a plausible neural substrate for grit, defined as

the capacity to pursue long-term goals and stick to them

despite failure and setbacks.

UNCITED REFERENCES

Goodman, 1997

Nigg, 2013

Pingault et al., 2011

Smedje, Broman, Hetta, & von Knorring, 1999

Acknowledgments

This study was supported by a grant by the Marcus and Amalia
Wallenbergs Foundation awarded to T. K. C. N. was supported
by the Wenner–Gren Foundation. The training software is non-
profit and is available upon request.

Reprint requests should be sent to Torkel Klingberg, Depart-
ment of Neuroscience, Retzius v. 8, Karolinska Institutet, 171 76
Stockholm, Sweden, or via e-mail: torkel.klingberg@ki.se.

REFERENCES

Alloway, T. P. (2007). Automatic Working Memory Assessment.
London: Pearson Assessment.

Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., &
Robbins, T. W. (2003). Stop-signal inhibition disrupted by
damage to right inferior frontal gyrus in humans. Nature
Neuroscience, 6, 115–116.

Baddeley, A. (1992). Working memory. Science, 255, 556–559.
Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., &
Woolrich, M. W. (2007). Probabilistic diffusion tractography
withmultiple fibre orientations: What can we gain?Neuroimage,
34, 144–155.

Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg,
H., Nunes, R. G., Clare, S., et al. (2003). Characterization
and propagation of uncertainty in diffusion-weighted MR
imaging. Magnetic Resonance in Medicine, 50, 1077–1088.

Brehmer, Y., Westerberg, H., & Backman, L. (2012). Working-
memory training in younger and older adults: Training gains,
transfer, and maintenance. Frontiers in Human Neuroscience,
6. doi:Artn 63, doi:10.3389/Fnhum.2012.00063.

Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L.
(2008). Transfer of learning after updating training mediated
by the striatum. Science, 320, 1510–1512.

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-
based analysis. I. Segmentation and surface reconstruction.
Neuroimage, 9, 179–194.

Dale, A. M., & Sereno, M. I. (1993). Improved localization of
cortical activity by combining EEG and MEG with MRI cortical
surface reconstruction—A linear-approach. Journal of
Cognitive Neuroscience, 5, 162–176.

Denk, F., Walton, M. E., Jennings, K. A., Sharp, T., Rushworth,
M. F. S., & Bannerman, D. M. (2005). Differential involvement
of serotonin and dopamine systems in cost-benefit decisions
about delay or effort. Psychopharmacology, 179, 587–596.

DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X.,
Rajeevan, N., & Gray, J. R. (2010). Testing predictions from
personality neuroscience. Brain structure and the big five.
Psychological Science, 21, 820–828.

Duckworth, A., & Gross, J. J. (2014). Self-control and grit:
Related but separable determinants of success. Current
Directions in Psychological Science, 23, 319–325.

Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly,
D. R. (2007). Grit: Perseverance and passion for long-term
goals. Journal of Personality and Social Psychology, 92,
1087–1101.

Duckworth, A. L., & Quinn, P. D. (2009). Development and
validation of the short grit scale (grit-s). Journal of
Personality Assessment, 91, 166–174.

Dweck, C. S. (1986). Motivational processes affecting learning.
American Psychologist, 41, 1040–1048.

Eskreis-Winkler, L., Shulman, E. P., Beal, S. A., & Duckworth,
A. L. (2014). The grit effect: Predicting retention in the
military, the workplace, school and marriage. Frontiers in
Psychology, 5. doi:Artn 36, doi:10.3389/Fpsyg.2014.00036.

Everitt, B. J., & Robbins, T. W. (2005). Neural systems of
reinforcement for drug addiction: From actions to habits
to compulsion. Nature Neuroscience, 8, 1481–1489.

Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the
human cerebral cortex from magnetic resonance images.
Proceedings of the National Academy of Sciences, U.S.A.,
97, 11050–11055.

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-
based analysis—II: Inflation, flattening, and a surface-based
coordinate system. Neuroimage, 9, 195–207.

Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999).
High-resolution intersubject averaging and a coordinate system
for the cortical surface. Human Brain Mapping, 8, 272–284.

Fuster, J. M. (2008). The prefrontal cortex (4th ed.). London:
Academic Press.

Goodman, R. (1997). The Strengths and Difficulties
Questionnaire: A research note. Journal of Child Psychology
and Psychiatry, 38, 581–586.

Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B.,
Czanner, S., et al. (2006). Reliability of MRI-derived
measurements of human cerebral cortical thickness: The
effects of field strength, scanner upgrade and manufacturer.
Neuroimage, 32, 180–194.

Hayasaka, S., & Nichols, T. E. (2003). Validating cluster size
inference: Random field and permutation methods.
Neuroimage, 20, 2343–2356.

Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive
training leads to sustained enhancement of poor working
memory in children. Developmental Science, 12, F9–F15.

Hutcheson, D. M., Parkinson, J. A., Robbins, T. W., & Everitt,
B. J. (2001). The effects of nucleus accumbens core and shell
lesions on intravenous heroin self-administration and the
acquisition of drug-seeking behaviour under a second-order
schedule of heroin reinforcement. Psychopharmacology
(Berlin), 153, 464–472.

Ito, R., Robbins, T. W., & Everitt, B. J. (2004). Differential
control over cocaine-seeking behavior by nucleus accumbens
core and shell. Nature Neuroscience, 7, 389–397.

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich,
M. W., & Smith, S. M. (2012). FSL. Neuroimage, 62, 782–790.

Kapogiannis, D., Sutin, A., Davatzikos, C., Costa, P., Jr., &
Resnick, S. (2013). The five factors of personality and regional
cortical variability in the Baltimore longitudinal study of
aging. Human Brain Mapping, 34, 2829–2840.

Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson,
P., Dahlstrom, K., et al. (2005). Computerized training of
working memory in children with ADHD—A randomized,
controlled trial. Journal of the American Academy of Child
and Adolescent Psychiatry, 44, 177–186.

Leh, S. E., Johansen-Berg, H., & Ptito, A. (2006). Unconscious
vision: New insights into the neuronal correlate of blindsight
using diffusion tractography. Brain, 129, 1822–1832.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of
prefrontal cortex function. Annual Review of Neuroscience,
24, 167–202.

Nemmi et al. 11



Nemmi, F., Sabatini, U., Rascol, O., & Peran, P. (2015).
Parkinson’s disease and local atrophy in subcortical nuclei:
Insight from shape analysis. Neurobiology of Aging, 36,
424–433.

Nigg, J. T. (2013). Attention deficits and hyperactivity-impulsivity:
What have we learned, what next? Developmental
Psychopathology, 25, 1489–1503.

Nymberg, C., Banaschewski, T., Bokde, A. L., Buchel, C., Conrod,
P., Flor, H., et al. (2014). DRD2/ANKK1 polymorphism
modulates the effect of ventral striatal activation on working
memory performance. Neuropsychopharmacology, 39,
2357–2365.

Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased
prefrontal and parietal activity after training of working
memory. Nature Neuroscience, 7, 75–79.

Patenaude, B. (2007). Bayesian statistical models of shape
and appearance for subcortical brain segmentation.
University of Oxford.

Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M.
(2011). A Bayesian model of shape and appearance for
subcortical brain segmentation. Neuroimage, 56, 907–922.

Pingault, J. B., Tremblay, R. E., Vitaro, F., Carbonneau, R.,
Genolini, C., Falissard, B., et al. (2011). Childhood
trajectories of inattention and hyperactivity and prediction
of educational attainment in early adulthood: A 16-year
longitudinal population-based study. American Journal of
Psychiatry, 168, 1164–1170.

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., &
Petersen, S. E. (2012). Spurious but systematic correlations
in functional connectivity MRI networks arise from subject
motion. Neuroimage, 59, 2142–2154.

Roberts, B. W., Chernyshenko, O. S., Stark, S., & Goldberg, L. R.
(2005). The structure of conscientiousness: An empirical
investigation based on seven major personality
questionnaires. Personnel Psychology, 58, 103–139.

Rudebeck, P. H., & Murray, E. A. (2011). Balkanizing the
primate orbitofrontal cortex: Distinct subregions for
comparing and contrasting values. Annals of the New York
Academy of Science, 1239, 1–13.

Salamone, J. D., & Correa, M. (2012). The mysterious
motivational functions of mesolimbic dopamine. Neuron,
76, 470–485.

Salamone, J. D., Steinpreis, R. E., Mccullough, L. D., Smith,
P., Grebel, D., & Mahan, K. (1991). Haloperidol and
nucleus-accumbens dopamine depletion suppress lever
pressing for food but increase free food-consumption in a
novel food choice procedure. Psychopharmacology, 104,
515–521.

Schilling, C., Kuhn, S., Paus, T., Romanowski, A., Banaschewski,
T., Barbot, A., et al. (2013). Cortical thickness of superior
frontal cortex predicts impulsiveness and perceptual reasoning
in adolescence. Molecular Psychiatry, 18, 624–630.

Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of
monkey dopamine neurons to reward and conditioned

stimuli during successive steps of learning a delayed
response task. Journal of Neuroscience, 13, 900–913.

Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn,
H. K., et al. (2004). A hybrid approach to the skull stripping
problem in MRI. Neuroimage, 22, 1060–1075.

Sescousse, G., Caldu, X., Segura, B., & Dreher, J. C. (2013).
Processing of primary and secondary rewards: A quantitative
meta-analysis and review of human functional neuroimaging
studies. Neuroscience and Biobehavioral Reviews, 37,
681–696.

Siegel, J. S., Power, J. D., Dubis, J. W., Vogel, A. C., Church, J. A.,
Schlaggar, B. L., et al. (2014). Statistical improvements in
functional magnetic resonance imaging analyses produced by
censoring high-motion data points. Human Brain Mapping,
35, 1981–1996.

Smedje, H., Broman, J. E., Hetta, J., & von Knorring, A. L.
(1999). Psychometric properties of a Swedish version of the
"Strengths and Difficulties Questionnaire". European Child
and Adolescent Psychiatry, 8, 63–70.

Smith, S. M. (2002). Fast robust automated brain extraction.
Human Brain Mapping, 17, 143–155.

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D.,
Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial
statistics: Voxelwise analysis of multi-subject diffusion data.
Neuroimage, 31, 1487–1505.

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster
enhancement: Addressing problems of smoothing, threshold
dependence and localisation in cluster inference.
Neuroimage, 44, 83–98.

Soderqvist, S.,Matsson,H., Peyrard-Janvid,M., Kere, J., &Klingberg,
T. (2014). Polymorphisms in the dopamine receptor 2 gene
region influence improvements during working memory
training in children and adolescents. Journal of Cognitive
Neuroscience, 26, 54–62.

Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive
coding of reward value by dopamine neurons. Science, 307,
1642–1645.

Tziortzi, A. C., Searle, G. E., Tzimopoulou, S., Salinas, C., Beaver,
J. D., Jenkinson, M., et al. (2011). Imaging dopamine receptors
in humans with [11C]-(+)-PHNO: Dissection of D3 signal
and anatomy. Neuroimage, 54, 264–277.

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., &
Nichols, T. E. (2014). Permutation inference for the general
linear model. Neuroimage, 92, 381–397.

Wise, R. A. (2004). Dopamine, learning and motivation. Nature
Review Neuroscience, 5, 483–494.

Yeo, B. T., Sabuncu, M. R., Vercauteren, T., Ayache, N.,
Fischl, B., & Golland, P. (2010). Spherical demons: Fast
diffeomorphic landmark-free surface registration. IEEE
Transactions on Medical Imaging, 29, 650–668.

Zhang, Y. Y., Brady, M., & Smith, S. (2001). Segmentation of
brain MR images through a hidden Markov random field
model and the expectation-maximization algorithm. IEEE
Transactions on Medical Imaging, 20, 45–57.

12 Journal of Cognitive Neuroscience Volume X, Number Y



1 

 

Supporting Information 

Structure of the training  

The training was presented in a fashion suitable for 6 years old. Specifically, the training toke the structure of a video game called ǲPlanet Huntǳ. At the beginning of the training, participants 
chose an avatar that represents them during the whole game. The avatar visits different ǲplanetǳ. Each planet presented to participants one of the tasks included in the different training 

plan (i.e. WM, Math and Reading). To clear one planet and access the following one, participants 

needed to win ͵ ǲracesǳ. Two avatars were presented in the left upper part of the screen, the subject’s and another avatar that represent the competitor. Each time the participants gave a 

correct answer, his avatar advanced toward the right (i.e. toward the finish line), each time the 

participants gave a wrong answer, the competitor avatar advanced. A race was over when one 

of the two avatars reached the final line. When a participant won three races within a planet, 

he/she could access the following one. There wasn’t a time limit to provide an answer to the single trials, but the ǲraceǳ game provided a competitive framework than kept children’s 
attention and motivated them to go through the training. 

Training Tasks 

The working memory training was composed by four different tasks: grid, circle, cube and 

number. In all the tasks except for the number task the children had to repeat a sequence that 

was shown. In the grid task the sequence was shown on a grid of dots. In the circle task, the dots 

were arranged as a circle, and the circle rotated of a certain angle (increasing with level) 

between the presentation and the answer. In the cube task, a 3D cube was presented on the 

screen, with four of the six faces visible. Each of the visible faces was divided in four tiles. A 

sequence of tiles was presented and the cube was rotated of a certain angle (increasing with 

levels) between the presentation and the answer. In the number task a series of digit was 

presented visually, and the children had to repeat the sequence backward, pressing the correct 



2 

 

digits presented on a number pad on the iPad. 

The math training comprised two tasks: the ten pals task, described in (Butterworth, Varma, & 

Laurillard, 2011), consisted in associating sticks of different length to create a stick with length 

equal to ten units. The arrows task consisted in several items: children were presented either 

with single number or with addition or subtraction. Their task was to indicate where, on a 

number line presented at the bottom of the screen, the number or the results of the arithmetic 

operations presented was situated. 

The reading training was based on the GraphoGame intervention(McCandliss, 2010). In this 

training the subjects had to match sounds to letters, spell words, match rhyming words, and 

complete crosswords. 

 

Grit questionnaire 

Below are presented the questions from the grit questionnaire we used. The questions 

modified to be suitable for 6 years old are in bold. The corresponding original questions from 

Duckworth & Quinn (2009) are in italic  

 
1. The student has overcome setbacks to conquer an important challenge 

 

2. New ideas and projects sometimes distracts the student from previous ones 

 

3. The interests of the student changes from month to month 

 

The interest of the student change from year to year 

 

4. The student is not discouraged by setbacks 

 

5. The student has been obsessed with a certain idea or project for a short time but later lost interest 

 

6. The student is a hard worker 

 

7. The student often sets a goal but later chooses to pursue a different one  

 

8. The student has difficulties maintaining focus on a project that takes more than a few days 

to complete 

 

The student has difficulties maintaining focus on a project that takes more than a few months to 
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complete  

 

9. The student finishes what he/she has started 

 

10. The student has achieved goals that took several days of work 

 

The student has achieved goals that took several years of work 

 

11.  The students often becomes interested in new pursuits 

 

12.  The student is diligent 

 

 

Evaluation Questions: 

Q1: How difficult did you think this task was? and Q2: How fun did you think this task was?. 

The questions appeared during a pause in the training program. Responses were provided on a 

five point Likert scale. On the Likert scale, a cartoon happy face indicated that the participant 

thought it was an easy exercise (Q1) and a fun task (Q2). The responses were coded as following: 0= ǲnot fun at allǳ/ǳreally hardǳ and Ͷ ǲreally funǳ/ǳvery easyǳ. 
 

Supporting analyses 

 

 

Comparison of the behavioral sample and the neuroimaging subsample 

 

We formally tested the hypothesis that the neuroimaging subsample and the behavioral 

sample came from the same population using the Kolmogorov-Smirnov test, which compare 

the empirical distribution functions of two samples. The null distribution of this statistic is 

calculated under the null hypothesis that the samples are drawn from the same distribution (i.e. 

that they are sampled from the same population). We tested the hypothesis that the main 

imaging sample (i.e. children included in the shape analysis of the striatum and in the 

assessment of cortical thickness, n = 27) was different from both the overall behavioral sample 

and from the subsample of children that trained WM. In both case the null hypothesis that the 

samples came from the same population could not be rejected (p = 0.491 and p = 0.421). We 

https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_hypothesis
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also performed a two samples t-test comparing grit in the neuroimaging and in the behavioral 

sample. This test showed that the difference in grit between the two samples was marginally 

significant (t = 1.6, df = 32.5, p = 0.10, Cohen’s d = 0.Ͷ [9ͷ% CI -0.17, 0.97]). The results of the 

Kolmogorov-Smirnov test and the two samples t test together suggest that the imaging and the 

behavioral sample did not differ in terms of grit. 

We tested the behavioral association between grit and training as well as transfer gain in the 

13 children in the neuroimaging sample that also participated in the VSWM training. These 

correlations were in the expected direction (r = 0.46 for training gain and r = 0.32 for transfer 

gain); however, they did not reach statistical significance (p = 0.1 and p = 0.27, respectively). In 

the whole sample (n=55) the correlation between training gain and grit was r = 0.46 and the 

correlation between transfer gain and grit was r = 0.42.  

 

Relationship between grit and training in the subsample training math 

 

We also test the association of grit with transfer gain in children who trained math. As for the 

WM training group, the transfer measure was obtained before and after the training. For math, 

the transfer measure was the verbal arithmetic task of the WISC-IV. This test was z-

transformed both at baseline and after training using the mean and standard deviation at 

baseline. The sample of subjects training math included in the math transfer analysis  (i.e. the 

subjects who trained math and reading as well as the subject who trained working memory 

and math) comprised 51 subjects.  

 

Further analyses assessing the specificity of the association between grit and training 

gain 

 

In order to further assess the specificity of the relationship between grit and training/transfer 

gain, we repeated the basic linear models comprising the transfer task after the training period 

or the performance at the trained tasks in the last quarter of the training period as dependent 
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variable and grit and baseline performance as independent variables, adding as further 

covariable the fluid intelligence at baseline (as measured by the matrix reasoning task)and the 

evaluation questions. The relationship between training gain and grit and transfer gain and grit 

hold significant for all models (respectively all ps < .027 and all ps < .02).  

 

 

 

 

 

 
Measure Mean(sd) 

Grit 46.7(±7.2) 

Fluid intelligence (Matrix) 13.6(±4) 

Evaluation questions 3.2(±0.7) 

Supporting Table1. Cognitive measures. Mean and (s.d.) of the cognitive measures used in the 

present study in the subsample included in the main imaging analyses (i.e. shape analysis of the 

striatum and assessment of cortical thickness, n = 27). 

 

 

 

Grit Hyperactivty 
Fluid 

Intelligence 

Attitude 

towards 

training 

Evaluation 

Grit 1 -0,41* 0,21 0,38 0,57*** 

Fluid 

Intelligence 0,21 -0,26 1 0,26 0,41* 

Evaluation 0,57 -0,40 0,41 0,61 1 

Supporting Table2. Correlation matrix. The table reports the correlations between the cognitive 

measures used in the study in the subsample included in the main imaging analyses (i.e. shape 

analysis of the striatum and assessment of cortical thickness, n = 27). 

 * < .05, ** < .01, *** <.001. Correlation in bold survive family wise error correction. 

 

 

 

 

 Gender (F/M) 
Grit (Mean ± 

sd) 

Age (avg 

months ± sd) 

Class (N in 

Class1/Class2/Class3/Class4/Class5) 

WMMath 18/10 44,54 ± 8,58 81,5 ± 3,78 6/5/6/5/6 

WMReading 13/14 45,04 ± 10,43 80,41 ± 3,62 5/6/7/5/4 

MathReading 11/12 43,48 ± 10,25 80,22 ± 3,99 5/6/5/3/4 

Reading 15/13 44,54 ± 9,98 81,29 ± 3,16 6/6/6/4/6 

Statistic X
2
 = 1.19, p = F = 0,09, p = F = 0,7, p = X

2
 = 1.76, p = 0,99 
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0,59 0,96 0,52 

Supporting table 3. Distributions of gender and class, together with average grit and age, break 

down by training group. Random distribution of gender and class was tested using a Chi 

squared test. Difference in grit and age were assessed with a one way ANOVA across groups. 
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 Sample size Group Distribution across groups 

Association of grit with 

WM gain 55 WM training 28 WMMath / 23 WMRead 

Association of 

Evaluation Questions 

with WM gain 55 WM training 28 WMMath / 27 WMRead 

Association of Fluid 

Intelligence with WM 

gain 55 WM training 28 WMMath / 27 WMRead 

Association of grit with 

math gain 51 Math training 23 MathRead / 28 WMMath 

Striatum shape analyses 

/ CV analyses / Cortical 

Thickness Analyses 27 All training groups 

5 MathRead / 9 ReadRead / 

7WMMath / 6WMRead 

DTI analyses 23 

All training groups / 

Subject with DWI images 

3 MathRead / 7 ReadRead 4 

/WMMath / 5 WMRead 

FD analyses 17 

All training groups / 

Subjects with both T1 

and BOLD images 

3 MathRead / 7 ReadRead / 3 

WMMath / 4 WMRead 

BOLD analyses 23 

All training groups / 

Subjects with BOLD 

images 

5 MathRead / 8 ReadRead / 4 

WMMath / 6 WMRead 

Supporting Table 4. Sample size and group stratification for the behavioral and the imaging 

analyses.  

 

 

Supporting references 

Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 

332(6033), 1049-1053. doi:10.1126/science.1201536 

McCandliss, B. D. (2010). Educational neuroscience: the early years. Proceedings of the 

National Academy of Sciences of the United States of America, 107(18), 8049-8050. 

doi:10.1073/pnas.1003431107 

1. Butterworth B, Varma S, & Laurillard D (2011) Dyscalculia: from brain to education. 

Science 332(6033):1049-1053. 

2. McCandliss BD (2010) Educational neuroscience: the early years. Proc Natl Acad Sci U S 

A 107(18):8049-8050. 

 

 


