View/Download articles by pressing on text

Nemmi, F., Schel, M. A., & Klingberg, T. (2018). Connectivity of the human number form area reveals development of a cortical network for mathematics. Frontiers in human neuroscience12, 465.

Darki, F. et al., Human ROBO1 regulates white matter structure in corpus callosum. BRAIN STRUCTURE & FUNCTION. Vol: 222, Issue: 2, Pages: 707-716 (MAR 2017)

Einarsdottir, E. et al., Identification of NCAN as a candidate gene for developmental dyslexia. SCIENTIFIC REPORTS, Vol:7, Article Number: 9294, (AUG 2017)

Moller, A. et al., Transcranial Electric Stimulation Can Impair Gains during Working Memory Training and Affects the Resting State Connectivity. FRONTIERS IN HUMAN NEUROSCIENCE. Vol: 11, Article Number: 364 (JUL 2017)

By: Schel, M. A.; Klingberg, T. Specialization of the Right Intraparietal Sulcus for Processing Mathematics During Development CEREBRAL CORTEX, Vol:27, Issue: 9, Pages: 4436-4446 (SEP 2017)

Sjowall, D. et al., No Long-Term Effect of Physical Activity Intervention on Working Memory or Arithmetic in Preadolescents. FRONTIERS IN PSYCHOLOGY. Vol: 8, Article Number: 1342 (AUG 2017)

Ullman, H.; Klingberg, T. Timing of White Matter Development Determines Cognitive Abilities at School Entry but Not in Late Adolescence, CEREBRAL CORTEX, Vol: 27, Issue: 9, Pages: 4516-4522 (SEP 2017)

Constantinidis, C. & Klingberg, T. The neuroscience of working memory capacity and training. Nature Reviews Neuroscience (2016).

Darki, F., et al. Human ROBO1 regulates white matter structure in corpus callosum. Brain Structure and Function, 1-10 (2016).

Darki, F., Nemmi, F., Möller, A., Sitnikov, R. & Klingberg, T. Quantitative susceptibility mapping of striatum in children and adults, and its association with working memory performance. Neuroimage (2016).

Klingberg, T. Neural basis of cognitive training and development. Current Opinion in Behavioral Sciences10, 97-101 (2016).

Nemmi, F., et al. Behavior and neuroimaging at baseline predict individual response to combined mathematical and working memory training in children. Developmental Cognitive Neuroscience20, 43-51 (2016).

Nemmi, F., Nymberg, C., Helander, E. & Klingberg, T. Grit is associated to structure of nucleus accumbens and gains in cognitive training. Journal of Cognitive Neuroscience (2016, in press).

Schel, M. & Klingberg, T. Specialization of the right intraparietal sulcus for processing mathematics during development. Cerebral Cortex (2016) DOI: 10.1093/cercor/bhw246.

Spencer-Smith, M. and Klingberg, T. (2015a) Benefits of a working memory training program for inattention in daily life: a systematic review and meta-analysis. PLoS One 10, e0119522.

Ullman, H., Spencer-Smith, M., Thompson, D.K., Doyle, L.W., Inder, T.E., Anderson, P.J., and Klingberg, T. (2015) Neonatal MRI is associated with future cognition and academic achievement in preterm children. Brain 138.

Darki F, Peyrard-Janvid M, Matsson H, Kere J, Klingberg T (2014). DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development Journal of Neuroscience, 34(43):14455–14462.

Bergman-Nutley S, Klingberg T (2014). Effect of working memory training on working memory, arithmetic and following instructions. Psychological Research Doi 10.1007/s00426-014-0614-0

Torkel Klingberg (2014). Childhood cognitive development as a skill. Trends in Cognitive Sciences, 1355

Nymberg C, et. al. (2014). DRD2/ANKKI Polymorphism Modulates the Effect of Ventral Striatal Activation on Working Memory Performance.Neuropsychopharmacology 1-9. Doi 10.1038/Npp.2014.83

Darki F, Klingberg T (2014). The role of fronto-parietal and fronto-striatal network in the development of working memory: a longitudinal study. Cerebral Cortex

Ullman H, Almeida R, Klingberg T (2014). Structural maturation and brain activity predict future working memory capacity during childhood development.Journal of Neuroscience 34(5):1592-1598

Bergman-Nutley S, Darki F, Klingberg T (2014). Music practice is associated with development of working memory during childhood and adolescence.Frontiers in Human Neuroscience

Roggeman C, Klingberg T, Feenstra H, Compte A, Almeida R (2014). Trade-off between Capacity and Precision in Visuospatial Working Memory. Journal of Cognitive Neuroscience 26(2): 211-222

Söderqvist S, Matsson H, Peyrard-Janvid M, Kere J, Klingberg T (2013). Polymorphisms in the Dopamine Receptor 2 Gene Region Influence Improvements during Working Memory Training in Children and Adolescents.Journal of Cognitive Neuroscience

Söderqvist S, Bergman Nutley S, Ottersen J, Grill KM, Klingberg T (2012b). Computerized training of non-verbal reasoning and working memory in children with intellectual disability. Frontiers in Human Neuroscience, 6, 1-8.

Darki F, Peyrard-Janvid M, Matsson H, Kere J, Klingberg T (2012). Three Dyslexia Susceptibility Genes, DYX1C1, DCDC2, and KIAA0319, Affect Temporo-Parietal White Matter Structure. Biological Psychiatry, 72(8), 671-676.

Ziermans T, Dumontheil I, Roggeman C, Peyrard-Janvid M, Matsson H, Kere J, Klingberg T (2012). Working memory brain activity and capacity link MAOApolymorphism to aggressive behavior during development. Translational Psychiatry, 2:e85.

Söderqvist S, Bergman Nutley S, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T (2012). Dopamine, working memory, and training induced plasticity: Implications for developmental research. Developmental Psychology, 48(3): 836-843.

Dumontheil I & Klingberg T (2011). Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later Cerebral Cortex, 22(5):1078-1085.

Dumontheil I, Roggeman C, Ziermans T, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T (2011). Influence of the COMT genotype on working memory and brain activity changes during development. Biological Psychiatry, 70(3), 222-229.

Bergman Nutley S, Söderqvist S, Bryde S, Thorell LB, Humphreys K, Klingberg T (2011). Gains in fluid intelligence after non-verbal reasoning training in 4-year-old children – a controlled, randomized study. Developmental Science, 14(3): 591-601.

Söderqvist S, McNab F, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T (2010). The SNAP25 gene is linked to working memory capacity and maturation of the posterior cingulate cortex during childhood. Biological Psychiatry, 68: 1120-1125.

Nutley SB, Söderqvist S, Bryde S, Humphreys K, Klingberg T (2010). Measuring working memory capacity with greater precision in the lower capacity ranges. Developmental Neuropsychology, 35(1): 81-95.

Klingberg T (2010). Training and plasticity of working memory. Trends in Cognitive Science,14(7): 317-324.

Klingberg T, McNab F (2009). Working memory remediation and the D1 receptor. American Journal of Psychiatry, 166(5): 515-6.

Edin F, Klingberg T, Johansson P, McNab F, Tegnér J, Compte A (2009). Mechanism for top-down control of working memory capacity. PNAS, 106(16): 6802-6807.

McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, Klingberg T (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323: 800-802.

Thorell L B, Lindqvist S, Bergman S, Bohlin G, Klingberg T (2009). Training and transfer effects of executive functions in preschool children.Developmental Science, 12(1): 106-113.

McNab F, Leroux G, Strand F, Thorell L, Bergman S, Klingberg T (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11): 2668-2682.

McNab F, Klingberg T (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1): 103-107. doi:10.1038/nn2024.

Edin F, Klingberg T, Stödberg T, Tegnér J (2007). Fronto-parietal connection asymmetry regulates working memory distractibility. Journal of Integrative Neuroscience, 6(4): 567-96.

Westerberg H, Klingberg T (2007). Changes in cortical activity after training of working memory – a single-subject analysis. Physiology & Behavior, doi:10.1016/j.physbeh.2007.05.041.

Olesen P, Macoveanu J, Tegnér J, Klingberg T (2007). Brain activity related to working memory and distraction in children and adults. Cerebral Cortex, 17(5): 1047-1054.

Edin F, Macoveanu J, Olesen P, Tegner J, Klingberg T (2007). Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. Journal of Cognitive Neuroscience, 19(5): 750-760.

Macoveanu J, Klingberg T, Tegnér J (2007). Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task. Biological Cybernetics, 96(4): 407-419.

Westerberg H, Jacobaeus H, Hirvikoski T, Clevberger P, Ostensson ML, Bartfai A, Klingberg T (2007). Computerized working memory training after stroke – a pilot study. Brain Injury, 21(1): 21-29.

Macoveanu J, Klingberg T, Tegnér J (2006). A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience, 141(3): 1611-1618.

Klingberg T (2006). Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia, 44(11): 2171-2177.

Klingberg T, Fernell E, Olesen P, Johnson M, Gustafsson P, Dahlström K, Gillberg CG, Forssberg H, Westerberg H (2005). Computerized training of working memory in children with ADHD – a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2): 177-186.

Nagy Z, Lindström K, Westerberg H, Skare S, Andersson J, Hallberg B, Lagercrantz H, Klingberg T, Fernell E (2005). Diffusion tensor imaging on teenagers, born at term with moderate hypoxic-ischemic encephalopathy.Pediatric Research, 58(5): 936-940.

Nagy Z, Westerberg H, Klingberg T (2004). Maturation of white matter is associated with the development of cognitive functions during childhood.Journal of Cognitive Neuroscience, 16(7): 1227-1233.

Westerberg H, Hirvikoski T, Forssberg H, Klingberg, T (2004). Visuo-spatial working memory span: a sensitive measure of cognitive deficits in children with ADHD. Child Neuropsychology, 10(3): 155-161.

Olesen P, Westerberg H, Klingberg T (2004). Increased prefrontal and parietal brain activity after training of working memory. Nature Neuroscience, 7(1): 75-79.

Olesen P, Nagy Z, Westerberg H, Klingberg T (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cognitive Brain Research, 18(1): 48-57.

Nagy Z, Westerberg H, Skare S, Andersson JL, Fernell E, Holmberg K, Böhm B, Forssberg H, Lagercrantz H, Klingberg T (2003). Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Paediatric Research, 54(5): 672-679.

Klingberg T, Forssberg H, Westerberg H (2002). Training of Working Memory in Children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6): 781-791.

Klingberg T, Forssberg H, Westerberg H (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1): 1-10.

Bunge SA, Klingberg T, Jacobsen RB, Gabrieli JDE (2000). A resource model of the neural basis of executive working memory. Proceedings of the National Academy of Sciences of the United States of America, 97(7): 3573-3578.

Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JDE, Moseley ME, Poldrack RA (2000). Microstructure of Temporo-Parietal White Matter as a Basis for Reading Ability : Evidence from Diffusion Tensor Magnetic Resonance Imaging. Neuron, 25(2): 493-500.

Klingberg T, (2000). Limitations in information processing in the human brain: neuroimaging of dual-task performance and working memory tasks. Progress in Brain Research, 126: 95-102.